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ABSTRACT
The previous papers in the series have provided a theoretical

framework for the Galerkin and least squares solution of first order
elliptic systems. In particular, optimal order error estimates for
piecewise polynomial approximation spaces were derived. These esti-
mates were available only under certain conditions on the approximating
spaces. The purpose of this paper is to illustrate the theory of the
previous papers by providing numerical examples and to furnish examples
of grids which do and do not satisfy the above conditions necessary for

optimal convergence,
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I. Introduction

The first two papers in this series developed an abstract theory for
the approximation of elliptic boundary value problems using mixed varia-
tional principles. It was shown that optimal approximations will result
if and only if a grid decomposition property (hereafter G.D.P.) held.
This paper reports numerical results verifying the theory.

An interesting feature of G.D.P. is that its validity requires
conditions on the grids entering into the definition of finite element
spaces. A secondary purpose of this paper is to furnish examples of
grids which satisfy G.D.P. and grids which do not. For example, in the
case of second order elliptic problems where linear elements are used,
we prove that the '"criss-cross grid" (see Figure 2-2b) does satisfy the

G.D.P.

II. Numerical Results for the Least Squares Principle

In this section we report the results of computations which illustrate
the least squares method discussed in {2]. These results give evidence of
the essential role played by the G.D.P. Furthermore, they point out certain
advantages that the least squares method possesses over the use of either

the Dirichlet or Kelvin variational principles.



All the examples deal with the Helmholtz equation
2,
(1) A¢ + k ¢ - F(X’Y)

in the unit square. An equivalent first order system is given by

(2) div u + k2¢ = F(x,y)
and
(3) u - grad ¢ =0

Three different sets of boundary conditions were used; these are depicted
in Figure 2-1. 1In conjunction with these data, three different grids were
used; these are illustrated in Figure 2-2. The grids of Figure 2-2a and
2-2b lead to two different piecewise linear finite element spaces, while
the grid of Figure 2-2¢ leads to a piecewise bilinear finite element space.
Sampie computational results are presented in Figures 2-3 to 2-6.
Figure 2~3 displays the L2 error of the approximate solution for the
components u and v of grad ¢. The exact solution is ¢ = sin(x-~y).
Both the Dirichlet and Neumann problems for (2) - (3) were computed for
the three grids of Figure 2-2 with k = 1/2. 1In these cases, u and v
have identical errors. Next the mixed data case of Figure 2~lc was considered.

In this case, the exact solution of the problem is given by

= cos(ﬂy) cos[Vgi:;EKl—x) /zos(féajii—)

Figure 2-4 displays the L, errors in u and v for the "directional"

2

and "criss-cross" grids, again with k = 1/2. For the "criss-cross" grid,

results are also given for k = 7/4 1in which case (1), or equivalently




(2) - (3), is indefinite. 1In all the above examples, the approximating

spaces were constrained to satisfy the appropriate essential boundary

conditions. An alternative approach is to leave the approximating spaces
unconstrained, and instead include the essential boundary conditions in
the variational principle [3]. Figure 2-4 also displays results for the
latter approach, using the "eriss-cross” grid for both k = 1/2 and 7/4.
Figure 2-5 displays the L, errors in ¢ using the "criss-cross' grid
with k = 1/2 and 7/4 and using both methods of imposing the boundary
conditions on the approximate solution. Finally, in Figure 2-6, results
for other examples using the '"criss-cross" grid are presented. For con-
trast, one result is given using the "directional" grid.

The results of these and other computations may be summarized as
follows. For all problems considered, the "criss-cross' grid yielded a
second order rate of convergence for the approximations to ¢, u and v.
Although the "directional" and bilinear grids generally yielded a second
order rate of convergence for the approximations to ¢, they generally
did not achieve such a rate for u and v. These results clearly point
out the crucial role the choice of grid plays in achieving an optimum
rate of convergence of the approximations to u. Furthermore, at least
for u and v, the "criss-cross" grid consistently yielded smaller values
for the L2 errors, even at moderately large values of the grid size. It
is shown in Section 4, which deals with the G.D.P., that the "criss-cross"
grid satisfies this property.

Unlike the Dirichlet or Kelvin principles, the least squares principle
allows the use of similar spaces for approximating the scalar ¢ and vec~
tor u. The Kelvin principle requires that the space in which one seeks

the approximation to ¢ be formed as the divergence of the elements of the

space in which one seeks approximations to u [1]. Analogously, the



Dirichlet principle implicitly requires that the space in which one seeks
approximations to u be composed of the gradient of the elements of the
scalar approximating space. Thus, these two principles excluded the possibili-
ty of using, for instance, continuous piecewise linear finite element spaces
for both ¢ and u. Therefore one cannot, in general, simultaneously
achieve second order accuracy in the approximations to ¢ and u. The least
squares principle does not require any such inclusion property and one may
choose piecewise linear spaces for the approximations to ¢ and u. There-
fore as is shown in [2] and illustrated in the examples of this section, one
may achieve second order accuracy in both the approximations to ¢ and u.

Of course, actually achieving the second order accuracy in approximations to
u  requires that the grid be chosen so that the G.D.P. be satisfied. This
fact was proved in [2]. The optimal accuracy of approximations to ¢, how-
ever, is independent of this grid requirement.

A final comment on the least squares method concerns the fact that the
matrix system resulting from the discretization is symmetric and positive
definite. These desirable matrix properties remain valid even if the problems
associated with (1) or (2)-(3) are indefinite, e.g. k2 in (1) or (2)-(3) 1is
larger than the magnitude of the smallest (in modulus) eigenvalue of the
Laplacian operator. The same will not be true for the Dirichlet or Kelvin
principles. Thus, even for indefinite problems, the least squares method
allows for the use of standard iterative techniques for the solution of the
associated matrix problem. In fact, insofar as the properties of the least
squares method discussed in [2] and in this paper are concerned, the method
is insensitive to the value of k except, of course, for the near singular
cases where k2 approaches an eigenvalue of the Laplacian operator. Further-
more, the least squares method of [2] results in a matrix which has a zero-
nonzero structure identical to that of the matrix obtained by using the Kelvin

principle with an identical choice of approximation spaces.
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I1TI. Numerical Results for the Kelvin Principle

In this section we briefly report the results of computations based
on the Kelvin principle discussed in [1]. These results give further
evidence of the essential role played by the G.D.P. The examples of this
section deal with the Poisson equation [(I) of section 2 with k = 0].

An equivalent first order system is given by (2)-(3) of section 2 with
k = 0.

We first consider results for the mixed data problems depicted in

Figure 2-1lc using the '"directional" grid illustrated in Figure 2-2a.

The particular problem considered has an exact solution given by
(L ¢ = sin(mx/2)cos(Ty)

Figure 3-1 displays the L2 error of the approximate solution for ¢
and the components u and v of u = grad ¢. The figure indicates
that the L2 errors in u and v remains roughly constant and the
L2 error in ¢ grows linearly as the size of the grid is reduced.
We recall from [1] that the G.D.P. is necessary and sufficient for the
stability of the Kelvin approximation. The results shown in Figure 3-1
indicate that the 'constant" CG appearing in the definition of the
G.D.P. in fact grows like h—z, where h 1is a measure of the grid size.
As a result, all accuracy in the approximation to u 1is lost, and the
approximation in ¢ actually becomes unbounded. These results, and
those below concerning the criss-cross grid give further evidence of
the importance of the G.D.P.

The directional grid used to generate the results of Figure 3-1 does

not satisfy the G.D.P. However, Lemma 1 of [1] is independent of this

property of the grid. In the context of the directional grid, that



lemma shows that the divergence of the error in the approximation to u
should be 0(h). This result is confirmed in Figure 3-1 where that
divergence is graphed as a function of h. As is evident from the figure,
the divergence of the error in u is indeed 0(h) even though the error
in u itself is 0(1).

We now consider results using the "criss-cross' grid illustrated in

Figure 2-2b. Figure 3-2 displays the L, errors of the approximate solu-

2
tions for u and v. Results are given for the mixed data problem with

exact solution given by (1) and for a Dirichlet problem with exact solution

¢ = sin(mx)sin(my) .

The mixed data and Dirichlet problems were approximated using an evenly
spaced grid. In addition, computations for the mixed data problem were
carried out using a variable grid whose spacing is determined by choosing

an even spacing in a (§,n) coordinate system, and then letting

This stretching has the effect of accumulating grid points near x =0
and y = 0. For all cases, the computed rate of convergence, using
criss-cross grids, is of second order. The results shown in Figure 3-2,
especially when compared with those of Figure 3-1 for the directional
grid, are lucid evidence of the necessity of the G.D.P. to the achieve-

ment of optimal orders of accuracy.




1v. Proof that the Criss-Cross Grid Satisfies the G.D.P.

For simplicity consider the Dirichlet problem for the uniform grid
shown in Figure 2-2b with yg = !h being the space of IR2 ~ valued

piecewise linear functions. To verify that this grid satisfies the

G.D.P. we must show that there is a positive number

@Y 0 < Ci < ®

independent of h for which the following holds. Given any

) g€ St = daivy™
there is a v, in 1% for which
(3 aivy™ = £,
and
) lawva™l, < Il £,
LMl = Tl

. h . :
The first step is to construct a local basis for V. The verification

will be completed by showing (3)-(4) holds for each element fh of this

basis.

Since !P consists of piecewise linear functions on the grid in
Figure 2-2b, observe that (2) implies that each fh in Sh is a piece-
wise constant function. What is interesting is that Sh is a strict
subspace of the space §h of all piecewise constant functions on the

criss-cross grid in Figure 2-2b. Indeed, the following gives a rule for

A . . h
determining when a function f_ in Sh is actually in S

h

Lemma 1: Let fh be in gh. Then fh is in Sh iff the following

holds. Given any rectangle R containing triangles Tl’TZ’T3’T4 (see



Figure 4-1) it is true that
(5) fh(Tl) + fh(t3) = fh(Tz) + fh(T4)

where fh(Tj) is the value of fh in Tj.

The proof of Lemma 1 will follow from Lemma 2 stated and proved below.
Note that since the dimension dim(gh) of §h is equal to the number

m of triangles in the grid, it follows from (5) that

(6) dim P = 3m/4 .

Moreover, a locally defined basis can be constructed as follows. For

each rectangle R (see Figure 4-1) we associate three functions

wl,wz,w3 which vanish outside R. The piecewise constant function

wi is uniquely determined in R by the requirement that it is identically
and zero in the other two triangles in R. As R varies

i U
1l in Ti Ti+l

over all rectangles this process defines 3m/4 independent functions in
Sh and hence the set of such functions is a basis for Sh. Interestingly,

this basis is exactly the union of the basis for piecewise constant func-

tions for the two directional grids shown in Figure 4-2.

Lemma 1 follows as an easy consequence of our next Lemma, which in
effect relates the components of any Vv € !ﬁ satisfying div(v) = f € Sh
to the value of f. Before stating and proving this lemma it is convenient
to first introduce a new coordinate system. For the generic rectangle R
of Figure 4-1 let 0, and T, denote the components of v() A<ixg 4)
along the diagonals, and let SO and no be the analogous components of
X(PO). (See Figure 4-3.) Then the condition that div(v) = f in R con-

strains only certain components of v. The coupling is shown in Figure 4-4,

with the precise relations given in the following lemma.




Lemma 2. Let f be a piecewise constant function on the rectangle
R with 61 denoting the value of f on the triangle T, (1 =1,2,3,4).
Then there is a continuous Rz valued function v which is linear in

each triangle Ti and which satisfies

(7) div(v) = £ in R
if and only if
5" S, + 8, =6, +8, .

1 3 2 4

Assuming the truth of Lemma 2, the rotated coordinates (Oi,Ti) of

v at the point Pi (1 =1,2,3,4) satisfy

(8) O =05+ T, - T, + (614-62)h/¢75

In addition, the (rotated) coordinates (Eo,no) of XﬂPo) satisfy
9 2&0 =20, + 1, - 1 (61+ 62 Yh/V 2

(10) Zno =T, + T (61— Gz)h//ir

Conversely, if (5')§ (8)-(10) hold, then so does (7).

Let us momentarily postpone the proof of Lemma 2 and turn to our
basic problem of verifying the G.D.P. First, observe that it is sufficient
to verify (4) for the case where fh = §, an arbitrary member of the local

basis. To estimate

(11) vl
-1

we solve the Dirichlet problem

(12) A =y in Q s =0 on T



Then (11) is equal to H Vo ”0 . Thus, if G(x,y) denotes the Green's

function for this problem, we have
o(x) = [ G, PV(y)dy
Q

But ¢ is equal to zero except on two triangles, call them T1 and T2’

where (¢ 1is identically 1. Hence

b(x) = [ G(x,ydy ,

T, VT,
and so
Vo) (x) = [ V. 6(x,y)dy
T]_UTZ_
It follows that
Holl, 2 cp’

for some positive constant Cl independent of ¥ and h. Our task

is therefore to find a piecewise linear v such that

(13) div(v) =V
and

' 2
a6 lelly < 5

for some positive constant C2 independent of v, ¥ and h. If this

holds the CG can be any number greater or equal to CZ/C1°
As is evident from Lemma 2 there are many V € Zb satisfying (13).

Moreover, as we shall see momentarily all will have nodal values of order

-10-~




0(h) near the triangles T, and T, where ¥ is 1. However, the
crucial step in our construction is to show Vv can be chosen such that
its nodal values decrease exponentially as we move away from T1 U T2
(roughly by a factor of two for each mesh spacing). This property yields
(14). 1Interestingly, the exponential decay does not occur for either of
the directional grids in Figure 4-2.

Suppose ¥ 1is 1 in the shaded triangles shown in Figure 4-5 and is
zero elsewhere. For simplicity we order the vertices of the subrectangles

as shown in this Figure, and let

(15) 045 = 94y h/vV2 R Ty = Ty h/v?2

denote the rotated coordinates o¢,T7 of v at the (i,j) node. In addition,

we let
(16) Eij = €ijh//2 , n,, = n,.h/v2
denote the coordinates of v at the midpoints (see Figure 4-6).

The couplings between (15)-(16) are given in Lemma 2. In particular,

for the rectangle containing the shaded triangles we have from (8) (with

8, =6, =1

(17) 811 = 800 + 1, - ’T‘Ol +1
(18) 28, = 28, - T+ Ty, - 1
(19) 2511 = Tio * Top = 1

For all other values of (i,j) we have

~ ~ ~ A

(20) Og41,541 = %15 T Tiv1,5 T T4

~-11-




—_—

(21) 2635 = 20541 941 T Tal,y t T 50

~ A

(22) Mis = Tie1,5 7 TiL54

First we set

A ~

°13° Tig> Fay0 My

to zero whenever either i or j are negative. Observe from the above
that G,T can be computed from (17) and (20) independently of the values

A A

€,n at the midpoints of the rectangles. Moreover, (17), (20) define

recurrence relati or OJ, .
currenc lations f i+1, 3+

along the lines
(23) i - j = constant

The idea is to select %ij such that Gij decreases by a factor of two
as we move along (23) for increasing i. Indeed, the solution which has
this property is illustrated in Figure 4-7 and is defined as follows.

Along the line
(24) i~j=20

N -i41
Gij is equal to 2 i+ for i > 1. It is zero for i % j. The orthogonal

A
component Tij is constant in magnitude along the lines

(25) i + j = constant.

~

When 1+ j is even, Tij is zero. When it is odd, say

(26) i+ j=2k-1 ,

then

27) Tyg =t 3k,
_12...




the plus sign belonging to points where j > i and the minus sign
belonging to points where j < i,

It is not necessary to work out the values of £i > Nyse Indeed,

3 ]
it is clear from (21)-(22) that these also decrease exponentially as
we move away from the node (0,0). This completes our construction of

the X.e_yh satisfying (13)-(14).

It remains to prove Lemma 2, and to do this we use the relation

(28) [divw) = [ vy,
T 3T

where T 1is any triangle and VvV is the outer normal to T. Since v

is piecewise linear (28) reduces to

3
(29) hdiv(v) = ) (v (m) ,

i=1

where my, My, My are the midpoints of the three sides of T. Suppose
we are given the generic rectangle R (see Figure 4-4) with 61 being

the value of f = div(v) in T;. Moreover, let (Oi,Ti), (Eo,n be

o)
the (rotated) coordinates of gﬁPi) as in Figure 4-3. Then applying (29)

to T1 gives

(30) oy + T, - EO - My = Sh/v'2

Similaxr applications to TZ’ T3, and T4 give

(31) 0] = Ty = £y + 1Ny = 62h//§'
(32) T, - O3+ Ey =g = 64h//7
(33) ~Ty = O3+ &g + 1, = §40/V2

-13~



It follows that

(34) 61+63=52+64

is necessary and sufficient for these two equations to have a solution.

Moreover, if (34) holds then (30)-(33) can be recombined as (8)-(10).

-14-
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A f A
“ v v
1 1 1
© © u u 4
- X -3 X
0 Q 1 0 v 1 0 v
(a) (b) (c)
Figure 2-1. Different boundary value specifications used in

numerical examples. Symbols indicate variable
specified on corresponding section of boundary.
a) Dirichlet data; b) Neumann data;

c) Mixed data.
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(a)

Figure 2-2.

(b) (c)

Grids used in numerical examples. a) "Directional"
triangulation; b) '"Criss-cross'" triangulation;

c) Bilinear quadrilaterals.
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rid size)
Figure 2-3. L2 error in the least squares approximation to
u = 0¢/3x or u = 3¢/dy for Dirichlet (a,b,f)_and
Neumann (c,d,e) problems with k = 3. (b,d) direc-
- - ==~ ————tional gridy ~(a,c) biltnear grid; (e,f) c¥iss-cross
grid. T )
. N




Slopes = -1

.02 —

.01 —

.005 —

.002 —
%Alllll .~
6 8 10 15 20

(Grrird size) -1

Figure 2-4. L, error in the least squares approximatiorr to u = 3¢/3x and
v = 3¢/3y for mixed boundary problem. (a,b) directional grid;
(c-i) criss-cross grid. (a-f) k = %; (g-j) k = 7/4. (a,c,e,g,i)
displays u; (b,d,f,h,j) displays v. (a-d,g,k) using constrained
spaces; (e,f,i,j) using boundary integrals.
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All slopes = -2

.001 —

.0007 —

(Grid size)'1

Figure 2-5. L2 error in the least squares approximation to ¢ for
mixed data problem using the criss-cross grid. (a,c) k = 7/4;
(b,d) k = 3. (a,b) using boundary integrals (c,d) using

constrained spaces.




Figure 2-6.

031
.01 —
.006 ~ Slope = -3/4
All slopes =
.003 — -2 except (d)
.001 —
.006 —
.004 +—
K_\h [ L

(Grid size)™!

L, error in the least squares approximation to u = 3¢/3x and
v'= 3¢/3y using the criss-cross grid (except for d which uses
the directional grid) with k-= 4. (a,c,d,f,g,h,i) displays u;
(a,b,d,e,f,g,1) displays v. (a,b,c,d,) Dirichlet problem;
(d,e,f,g,h) Neumann problem. (a,f) have exact solution ¢ = x> + y3;

for (b,c,e,h) ¢ = sin(2x-y); for (d,g,i) ¢ = sin(xy).
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Figure 3-1.

Error
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(Grid size)'1

L2 error in the Kelvin approximation to ¢, u = 9¢/9x,

v = 3¢/3y, and div(u,v) = 3u/dx + 3v/dy wusing the

~directional grid for -the mixed data problem.
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I
6 8 10
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Figure 3-2. L2 error in the Kelvin approximation to u = 3¢/3x and

v = 3¢/9y using the criss-cross grid. (a,c,d) displays u;
(b,c,e) displays v. (a,b) mixed data problem using a

variable grid; (c) Dirichlet problem using a regular grid;

- (d,e) mixed data problem on a regular grid. --—— - —



Figure 4-1. The generic rectangle R.




Figure 4-2.

Directional grids.



Py

Figure 4-3. Rotated coordinates.




T4

Figure 4-4.

Couplings induced by the

divergence condition (3).
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(,1)
(0,0) (1,0)
(-1,-1) b ~
1
Figure 4-5. Support of the function

(shaded area).




(i, j+1) (i+1, j+1)

i] i

(i, J) (i+1, )

Figure 4-6. Coordinate labels.




1/8 1/16 - 1/32
(0,5)
1/8 1/16 1/8 -1/32
(0,4)
1/4 1/8 1/4-1/16
(0,3)
1/4 1/2 -1/8 -1/16
(0,2) \ \
1 -1/4 -1/8
(0,1)
-1/4 -1/8
(0,0) (1,0) (2,0) ‘EO) (4,0) \
Figure 4-7. Nonzero values of 8ij and ?i..
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